A Unified Solution Method for Free Vibration of Arbitrarily Shaped Plates without or with Cracks

Author:

Song Yuyu12,Xue Kai1,Li Qiuhong1

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, P. R. China

2. College of Mechanical and Electrical Engineering, Heilongjiang University, Harbin 150080, P. R. China

Abstract

This paper presents a new approach for analyzing the free vibration of thin plates with arbitrary piecewise smooth curvilinear contour under various boundary conditions. It can also be applied to plates with cracks. This approach is based on the transformation of energy integral expressions and the domain decomposition technique. Furthermore, boundary conditions are modeled by using linear springs to restrain the plate edges. For obtaining the expressions of energy integral, the arbitrarily shaped domain of integration is divided into several trapezoid domains with curved sides by a set of parallel lines passing through the intersection points of contour curve segments. Then, Jacobi orthogonal polynomials are introduced as the admissible functions, so that the repeated integrals in the energy expressions are reduced to definite integrals analytically. At this point, the calculation method of the energy functional is determined by the equation forms of the curve segments of the plate contour. When the equations of the curve segments allow the integrands to have analytic primitive functions, the energy functional has an analytical solution. Otherwise, the Gauss–Legendre method is used to obtain the numerical solution. Accordingly, the arbitrarily shaped plate with cracks is decomposed into several arbitrarily shaped subdomains based on the cracks. Each subdomain is handled according to the above procedure. The continuity conditions at the interconnecting interfaces of the subdomains are realized by linear springs. The plate without or with crack is modeled by setting the spring stiffness to infinity or 0. The accuracy of the proposed method is verified by comparing the obtained results with the published results. Furthermore, the vibration characteristics of plates with various shapes, such as astroid-shaped plates and cracked elliptical plates, are investigated. These new results can serve as benchmarks for further studies on the vibration of plates.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3