Influence of Prestress on Vibration Frequency of Beam String Structures Based on Exact Matrix Stiffness Method

Author:

Guo Yu-Fei12ORCID,Pan Wen-Hao1345ORCID,Luo Yao-Zhi145ORCID

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, P. R. China

2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, P. R. China

3. Architectural Design and Research Institute of Zhejiang University Co., Ltd., Hangzhou 310028, P. R. China

4. Key Laboratory of Space Structures of Zhejiang Province, Hangzhou 310058, P. R. China

5. Future City Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China

Abstract

Beam string structures (BSS) are frequently employed in large-span spatial structures due to their high load-carrying efficiency and elegant appearance. Owing to the neglect of the influence of prestress, the natural frequency of the BSS is often overestimated which could be crucial to the dynamic behavior of BSS. This paper presents an exact matrix stiffness analysis method (MSM) for investigating the relationship between prestress and the natural frequency of the planar BSS. A novel dynamic stiffness matrix of beam–columns considering the natural frequency and axial force is used to develop the MSM. The dynamic analysis of the structural vibration stability of BSS is performed by using the global structural stiffness matrix which is assembled from the element stiffness matrices in the global coordinate system. The proposed MSM with the exact dynamic element stiffness matrix for the dynamic analysis of the BSS is verified by comparing with previous results based on the finite element method. The illustrative examples demonstrate that the prestress in the cable has a negative effect on the natural frequency of the BSS and should be considered in the dynamic analysis. As the axial force increases from zero to the buckling load [Formula: see text], the natural frequency of the BSS decreases from the maximum vibration frequency to zero. The influence of prestress on the vibration frequencies of BSS is particularly significant when the prestress to balance the loads is large, especially in the case of large dead and live loads (e.g. floor slabs).

Funder

National Natural Science Foundation of China

Center for Balance Architecture of Zhejiang University

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3