Influence of Temperature and Moisture on Free Vibration Behavior of Skew Laminated Composite Sandwich Panels with CNTRC Core

Author:

Kallannavar Vinayak1,Kattimani Subhaschandra1,Ramesh H.2

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India

2. Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal 575025, India

Abstract

This paper presents the influence of temperature and moisture on the free vibration characteristics of skew laminated composite sandwich (SLCS) panels. The face sheets of the panels are made of graphite–epoxy composite, while the core consists of carbon nanotube-reinforced composite. The coupled hygro-elastic and thermo-elastic relations for the SLCS shells/panels are formulated using first-order shear deformation theory. The nonmechanical stiffness matrices are represented by the initial stress stiffness matrix developed using nonlinear strain–displacement relations. The temperature and moisture-dependent material properties are considered to analyze the laminated composite sandwich spherical, hyperbolic, ellipsoid, cylindrical Shells, and flat plates. Several numerical examples are comprehensively studied to establish the influence of temperature, moisture, the volume fraction of carbon nanotubes in the core material, functional gradation types, skew angle, and edge constraints on the vibration responses of SLCS shells. Further exploration is devoted to studying the combined effect of moisture, temperature, and the geometrical parameters such as length to width ratio, length to thickness ratio, radius-to-length ratio, and the core thickness to face sheet thickness ratios on the natural frequency of the skew laminated composite sandwich panels.

Funder

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3