Dynamic Analysis of Nonclassically Damped Systems with Linear Behavior Using Load-Dependent Ritz Vectors

Author:

Chen Huating1,Hao Hong2,Bi Kaiming2,Tan Ping1,Peng Lingyun3,Zhou Fulin1

Affiliation:

1. Earthquake Engineering Research & Test Centre, Guangzhou University, Guangzhou, P. R. China

2. Centre for Infrastructure Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia

3. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, P. R. China

Abstract

In the present paper, a practical superposition method is proposed for complex load-dependent Ritz (CLDR) vectors for use in the dynamic analysis of nonclassically damped systems. In particular, an algorithm for CLDR vector generation is developed and the CLDR vectors are calculated in the physical space, instead of the state space, to reduce the computational effort and storage space, while improving the stability of the algorithm. Moreover, single CLDR vector (i.e. using only one starting vector) and block CLDR vector (i.e. using multi-starting vectors) generation procedures are introduced for the uni and multidirectional loading patterns respectively, and the latter is applied to the system with repeated natural frequencies. In addition, a criterion, which is based on the spatial load distribution, is proposed to determine a proper number of the CLDR vectors prior to their use in the dynamic analysis. Two numerical examples are provided to illustrate the accuracy and efficiency of the proposed method. Also, the performance of the cut-off criterion is presented and 10% error or less in the participation loading distribution is recommended for practical applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3