Nonlinear Free Flexural Vibration of Curvilinear Fibre Composite Laminates Using a Higher-Order Element

Author:

Ganapathi Manickam1,Venkatachari Anand23,Haboussi Mohamed4,Mathew Arun Tom1

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India

2. Tech Mahindra Ltd., Electronic City, Bangalore 560 100, India

3. School of Aeronautical Sciences, Hindustan University, Chennai 603103, India

4. Université Paris 13-CNRS, LSPM, UPR 3407, Villetaneuse F-93430, France

Abstract

In the present work, the nonlinear free flexural vibration of thick curvilinear fiber composite laminates is investigated using a higher-order shear flexible eight-noded quadrilateral element developed considering the variation of in-plane and transverse displacement through the thickness. The formulation includes both the geometric nonlinearity and inertia effects. The governing equations, derived based on Lagrange’s equations of motion, are solved iteratively through an eigenvalue approach. The formulation is tested against various problems for which the solutions are available in the literature. A detailed analysis is made to assess the influence of fiber angles, lamination schemes, boundary conditions, thickness, and aspect ratios on the nonlinear frequency ratio at large amplitude vibrations of the laminates. A comparative study is also done along with the first-order and simple higher-order theory deduced from the present model by neglecting the thickness stretching effects. The present analysis shows the degree of hardening behavior getting affected noticeably compared to those of the traditional straight fibers, thus exhibiting the occurrence of drop off in frequency ratio and redistribution of mode shapes at certain amplitudes of vibration.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3