Detection of Structural Damage in Rotating Beams Using Modal Sensitivity Analysis and Sparse Regularization

Author:

Yang Dahao1,Lu Zhong-Rong1,Wang Li1

Affiliation:

1. School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou, P. R. China

Abstract

Rotating beams are often encountered in the wind turbines and the rotors, and detection of the damages in rotating beams as earlier as possible is central to ensuring the safety and serviceability of practical structures. To this end, a modal sensitivity approach in conjunction with the sparse regularization is proposed in this paper. First, the eigen equations for the flap-wise and chord-wise vibrations of a rotating beam are established upon Hamilton’s principle. Then, damage detection is formulated as a nonlinear least-squares problem that finds the damage coefficients to minimize the error between the measured and calculated data. To solve the nonlinear least-squares problem, the sensitivity method that requires the modal sensitivity analysis is developed. In real applications, damage detection is usually an ill-posed problem and to circumvent the ill-posedness, the sparse regularization is introduced due to the fact that the numbers of actual damage locations are often scarce. Numerical examples are studied and results show that the proposed approach is more accurate than the enhanced sensitivity approach and the flap-wise modal data outperforms the chord-wise modal data in damage detection of rotating beams.

Funder

National Natural Science Foundation of China

Guangdong Province Natural Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3