Dynamic Response Analysis of Moving Trains Passing Through the Stationary Thunderstorm Downburst Wind

Author:

Zhang Fei1ORCID,Hu Peng1ORCID,Han Yan1ORCID,Cai C. S.12ORCID,He Dan1ORCID,Chen Fei1ORCID

Affiliation:

1. School of Civil Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China

2. School of Transportation, Southeast University, Nanjing 211189, P. R. China

Abstract

The safety of the high-speed train traveling through the stationary thunderstorm downburst wind was studied. First, a thunderstorm wind test device was used to simulate the stationary thunderstorm downburst wind. Based on the rigid model pressure measurement tests, the aerodynamic forces of the train traveling along different paths through the stationary thunderstorm downburst wind were measured. The influence of the radial distance of the crossing path on the aerodynamic force coefficients of the train was investigated. On this basis, an unsteady aerodynamic model of the high-speed train crossing through the stationary thunderstorm downburst wind was established, and dynamic response analysis was carried out using the SIMPACK multibody dynamics simulation software to explore further the safety of the high-speed train crossing through the stationary thunderstorm downburst wind. The research showed that the stationary thunderstorm downburst wind field has significant spatial variation characteristics compared with the atmospheric boundary layer wind field. When the train passes through the thunderstorm downburst wind, the radial wind speed and wind yaw angle experienced by the train constantly change, and the change curve shows a symmetrical distribution. The aerodynamic force of the train will undergo sudden loading and unloading processes, and the lateral force coefficient of the train on different paths shows a “pulse-type” variation. Moreover, the lateral force coefficient increases with the increase of wind yaw angle. Under the influence of the thunderstorm downburst wind, the variation trend of the aerodynamic force coefficients of the train is consistent with that under crosswind. However, there are significant differences in the numerical values. Therefore, it is impossible to simply use the formula for calculating the aerodynamic force coefficients of the train under crosswinds to predict the aerodynamic force coefficients of the train under the thunderstorm downburst wind. While passing through the thunderstorm downburst wind, the overturning coefficient index plays a decisive role in the safety of train operations. Train rollover is the main form of train safety accidents, while derailment accidents are not easy. The numerical results obtained in this study are significant for evaluating the operational safety while moving trains traversing the stationary thunderstorm downburst wind.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hunan Provincial Postgraduate Scientific Research Innovation Project of China

Postgraduate Scientific Research Innovation Project of Changsha University of Science and Technology

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3