Numerical Estimation of Elastic Constants of Hydroxyapatite at Finite Temperatures: A Comparisons of Different Force Fields

Author:

Roy Aritri1ORCID,Patra Puneet Kumar2ORCID,Bhattacharya Baidurya2ORCID

Affiliation:

1. Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India

2. Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India

Abstract

Hydroxyapatite (HAP) is a naturally occurring calcium phosphate mineral that resembles human hard tissue in structure and composition. Its unique structure makes it suitable for a variety of applications such as biomedical implants, pollution control, nuclear waste management. The hexagonal structure of HAP endows it with five independent elastic constants, and a comprehensive understanding of their role and properties is essential for large scale adoption of HAP in various applications. However, the limited experimental and computational estimates currently available exhibit a wide scatter and occasional inconsistencies, and little effort has been made to quantify the influence of operating temperature on HAP elastic response. In this paper, we calculate the five elastic constants of hexagonal HAP first from Density Functional Theory (DFT)-based stress-strain relations derived using ultrasoft pseudopotential with Perdew-Burke-Ernzerho (PBE) exchangecorrelation functional under generalized gradient approximation (GGA) on the 44 atom single unit cell, and then with molecular dynamics (MD)-based stress-strain relations derived from 4 × 4 × 6 unit cells using three distinct families of force fields. These force fields are differentiated by how they model the non-bonded interactions: Lennard-Jones, Born-Mayer-Huggins and Buckingham types. We conduct the MD studies in the temperature range of 10-500 K. We find DFT to slightly overestimate the unit cell volume (a known consequence of using GGA) compared to X-ray powder diffraction-based experimental values reported in the literature. The predicted elastic constants satisfy Born’s criterion for mechanical stability. All potential models agree with DFT that HAP exhibits higher stiffness along [Formula: see text]-axis. Lattice parameters are found to increase with temperature, while the elastic constants decrease. Their rate of change, however, differs based on the force field. Among the three, the force field based on Buckingham potential appears to perform the best and agrees qualitatively with DFT and experimental results.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3