Response Characteristics and Suppression of Vortex-Induced Vibration of the Flexible Cable

Author:

Han Yan1ORCID,Chen Xu1ORCID,Zhou Xuhui12ORCID,Yang Junfeng3ORCID,Hu Peng1ORCID,Yan Hubin1ORCID

Affiliation:

1. School of Civil Engineering, Changsha University of Science & Technology, Changsha, Hunan 410114, P. R. China

2. China Railway 11th Bureau Group Co. Ltd., Wuhan, Hubei 430061, P. R. China

3. China Railway Seventh Group Co., Ltd, Zhengzhou, Henan 410005, P. R. China

Abstract

To investigate the vortex-induced vibration (VIV) of a flexible cable in the uniform flow, experiments were conducted using a flexible cable with an external diameter of 80[Formula: see text]mm and a length of 10.48[Formula: see text]m in the wind tunnel. The characteristics of multi-modal VIV, time-frequency and traveling wave behavior of the flexible cable were analyzed. Moreover, the effects of twist direction, diameter and the single/double helical wire on the VIV characteristics of the flexible cable were investigated. It is found that the flexible cable experiences single and multi-modal VIVs in uniform flow at different incoming wind speeds, respectively. For the multi-modal VIV of the flexible cable, the vibration over the time history is dominated by two adjacent modal frequencies and shows a phenomenon of beat vibration. The multi-modal VIV responses of the flexible cable show a mix of standing and traveling wave behaviors, in which the effects of standing wave are more pronounced near both ends and the effects of traveling wave are more dominant in the middle region of the flexible cable. The twist direction of the helical wire has little effect on the VIV responses of the flexible cable. The VIV amplitudes of the flexible cable can be reduced by a single helical wire. With the diameter of the helical wire increases, the suppression effects of the single or double helical wire on the VIV of the flexible cable can be improved. Particularly, the double helical wire with diameter 0.10D can effectively suppress the VIV of the flexible cable.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Hunan Provincial innovative foundation for postgraduates

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3