Dynamics of a Pedestrian’s Walking Motion Based on the Inverted Pendulum Model

Author:

Ouyang Lijun1,Li TingTing1,Zhen Bin1,Wei Lei2

Affiliation:

1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

2. Railway Group 5 Mechanization of Engineering Limited, Liability Company, Hengyang 421002, P. R. China

Abstract

In this paper, the inverted pendulum model is proposed to describe a pedestrian’s walking motion by considering that the pivot point vibrates periodically up and down. The stability, periodic solutions and oscillations of the inverted pendulum are theoretically investigated, the correctness of which is illustrated by numerical simulations. According to frequency spectrum analysis, the inverted pendulum can exhibit periodically or quasi-periodically stable oscillations. However, we demonstrate that the inverted pendulum will maintain the ratio between the lateral and vertical vibration frequencies near [Formula: see text] as an optimizing selection of stability. The theoretical result agrees with the measurement result for a normal pedestrian such that the lateral step frequency is always half the vertical step frequency, which means that it is feasible and reasonable to describe a pedestrian’s walking motion using the inverted pendulum with the pivot vibrating harmonically in the vertical direction. The inverted pendulum model suggested in this paper could contribute to the study of pedestrian–footbridge interaction, which overcomes the difficulty of directly determining the expression of the lateral force induced by pedestrians.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shear Lag Effects on Pedestrian-Induced Vibration and TMD-Based Vibration Control of Footbridges;Structural Engineering International;2022-06-23

2. Effect of Dual-Tasks Walking on Human Gait Patterns;Journal of Bionic Engineering;2022-04-13

3. An Intelligent Analysis Method for Human-Induced Vibration of Concrete Footbridges;International Journal of Structural Stability and Dynamics;2020-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3