Effects of Concentrated Mass on the In-Plane Dynamic Behaviors of Two-Cable Networks with a Cross-Tie

Author:

Di Fangdian1ORCID,Zhang Chenyu1ORCID,Yin Jun1ORCID,Sun Limin2ORCID,Chen Lin3ORCID

Affiliation:

1. College of Civil Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China

2. Department of Bridge Engineering, Tongji University, State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China

3. Department of Bridge Engineering, Tongji University, Shanghai 200092, P. R. China

Abstract

This study proposes a two-cable network model, which includes a cross-tie and two concentrated masses installed at the connection points of cross-tie and cable. The characteristic equation of such a cable network system is formulated via the complex modal analysis method. Then, dynamics of a twin-cable network is discussed in details, and the effect of concentrated mass on the system modal frequencies, damping and mode shapes is investigated. Furthermore, a general two-cable network system is analyzed. Results show that the concentrated mass always reduces the modal frequency, as it causes an increase in the modal mass of the system. When installing a concentrated mass in a twin-cable network, the difference of vibration modes between the cables can be increased in the in-phase modes, thereby achieving the damping effect of the damping type cross-tie on these modes. For a twin-cable network with a viscous damper, a small concentrated mass can significantly increase the modal damping of the in-phase modes as long as the damping coefficient of the damper is properly set. Meanwhile, when there is a two-cable network with unequal length cables, the presence of concentrated masses may reduce differences in vibration modes between cables, thus leading to decreased damping of some modes.

Funder

the National Natural Science Foundation of China

China Postdoctoral Science Foundation

the Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3