Continuum Shell Model for Buckling of Single-Walled Carbon Nanotubes with Different Chiral Angles

Author:

Roy Chowdhury Amar Nath1,Wang Chien Ming2,Koh Soo Jin Adrian3

Affiliation:

1. Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge, Singapore 119260, Singapore

2. Engineering Science Programme and Department of Civil Engineering, National University of Singapore, Kent Ridge, Singapore 119260, Singapore

3. Department of Mechanical Engineering, National University of Singapore, Kent Ridge, Singapore 119260, Singapore

Abstract

In this paper, an equivalent thick cylindrical shell model is proposed for the buckling analysis of short single-walled carbon nanotubes (SWCNTs) with allowance for different chiral angles. Extensive, molecular dynamics (MD) simulations are first performed using the adaptive intermolecular reactive bond order potential to determine the critical buckling loads/strains. The MD simulations buckling results are then used as reference solutions to calibrate the properties of the thick cylindrical shell model. Central to this development is the establishment of an empirical expression for the Young's modulus that is a function of both the diameter and the chiral angle of the SWCNT. For the shell model, we have assumed that the Poisson ratio ν = 0.19 and the shell thickness h = 0.066 nm . It will be shown that the proposed shell model furnishes good estimates of the critical buckling loads for SWCNTs with different chiral angles. The critical buckling strains are also evaluated from the critical buckling load with the aid of the stress–strain relation of SWCNTs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3