Moving Force-Induced Vibration of a Rotating Beam with Elastic Boundary Conditions

Author:

Lv Binglin1,Li Wanyou1,Ouyang Huajiang23

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Nangang, Harbin 150001, P. R. China

2. School of Engineering, University of Liverpool, The Quadrangle, Liverpool, L69 3GH, UK

3. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, P. R. China

Abstract

In this paper, an analytical technique, the so-called Fourier Spectral method (FSM), is extended to the vibration analysis of a rotating Rayleigh beam considering the gyroscopic effect. The model presented can have arbitrary boundary conditions specified in terms of elastic constraints in the translations and rotations or even in terms of attached lumped masses and inertias. Each displacement function is universally expressed as a linear combination of a standard Fourier cosine series and several supplementary functions introduced to ensure and accelerate the convergence of the series expansion. Lagrange's equation is established for all the unknown Fourier coefficients viewed as a set of independent generalized coordinates. A numerical model is constructed for the rotating beam. First, a numerical example considering simply supported boundary conditions at both ends is calculated and the results are compared with those of a published paper to show the accuracy and convergence of the proposed model. Then, the method is applied to one real work piece structure with elastically supported boundary conditions updated from the modal experiment results including both the frequencies and mode shapes using the method of least squares. Several numerical examples of the updated model are studied to show the effects of some parameters on the dynamic characteristics of the work piece subjected to moving loads at different constant velocities.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3