Phase Difference in Lateral Synchronization of Pedestrian Floors Using a Modified Hybrid Van der pol/Rayleigh Oscillator

Author:

Kumar Anil1,Erlicher Silvano2,Argoul Pierre3

Affiliation:

1. Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India

2. EGIS Industries, 4 rue Dolores Ibarruri, Montreuil, TSA 50012-93188, France

3. Universite Paris-Est, Laboratoire Navier (unr 8205), CNRS, ENPC, IFSTTAR, F-77455, Marne-la-Vallee, France

Abstract

The modified hybrid Van der Pol/Rayleigh (MHVR) oscillator was originally proposed by the authors to model the lateral oscillations of a pedestrian walking on a rigid floor and it was shown that for the autonomous case, the MHVR oscillator can correctly fit the experimental data. The case of a pedestrian walking on a laterally moving floor is modeled by a nonautonomous oscillator. The case of a floor subjected to a harmonic lateral motion has been then studied by the authors, with focus on the amplitude and stability of the entrained response, i.e. the response having the same frequency as that of the given periodic excitation. For the nonautonomous (moving floor) case, the main focus of this paper is on the analysis of the phase difference between the oscillator entrained response and the external excitation. Both analytical and numerical calculations have been performed. The approximate analytical method is the harmonic balance method. Then, the model is used to represent the experimental results for the pedestrian lateral oscillations during walking. Comparison is made for the examples along with discussions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3