Cross-Section Stability and Design of Normal Strength and High Strength Steel I-Sections in Fire

Author:

Kucukler Merih1ORCID

Affiliation:

1. School of Engineering, University of Warwick, Coventry CV4 7AL, UK

Abstract

The structural response and design of normal strength and high strength steel I-sections at elevated temperatures are investigated in this paper. The shell finite element models of steel I-section elements capable of replicating their behavior in fire are developed and validated against experimental results from the literature. The validated shell finite element models are then utilized to generate extensive structural performance data for steel I-sections, considering a broad range of plate slenderness values for cross-section elements, elevated temperature levels, cross-section aspect ratios as well as different loading conditions and normal strength and high strength steel grades. The accuracy of the existing methods provided in the European structural steel fire design standard EN 1993-1-2 and its upcoming version prEN 1993-1-2 for the ultimate strength predictions of normal strength and high strength steel cross-sections in fire is assessed. Scope for improvement is observed. Considering this, a new method for the ultimate strength predictions of normal strength and high strength steel sections at elevated temperatures is put forward. It is shown that the proposed method leads to more accurate ultimate strength predictions for normal strength and high strength steel I-sections in fire with a higher level of reliability relative to the existing design methods provided in EN 1993-1-2 and prEN 1993-1-2.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3