A Nonlocal Numerical Solution Based on Carrera Unified Formulation for Static and Free Vibration Analysis of Laminated Composite Nanoplate

Author:

Cuong-Le Thanh1ORCID,Le Minh Hoang1ORCID,Linh-Nguyen Thi Thuy2ORCID,Luong Van Hai34ORCID,Khatir Samir1ORCID,Tran Minh Thi34,Nguyen Thai-Binh34ORCID

Affiliation:

1. Center for Engineering Application and Technology Solutions, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam

2. Faculty of Civil Engineering, Ho Chi Minh City University of Technology — HUTECH, Ho Chi Minh City, Vietnam

3. Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam

4. Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam

Abstract

This paper presents an advanced numerical model based on Carrera unified formulation (CUF) and isogeometric analysis (IGA), the size-dependent finite element unified formulation model is proposed to investigate the static bending and free vibration of laminated composite nano-plate. The CUF type of trigonometric function with nine degrees of freedom is used to simulate the displacement fields of laminated nano-plate. The size effect of nano-plate structures is included through the Eringen’s nonlocal elastic theory. The size-dependent governing equations for static bending and free vibration of laminated are established based on CUF, IGA and nonlocal theory. The correctness of the presented numerical model is verified by comparison with existing solutions. Furthermore, with the addition of a nonlocal effect, the plate’s stiffness decreases correlating to an increase in nonlocal parameter. Through different calculations, the changes in the static and free vibration responses of laminated composite nano-plate are effected by nonlocal parameter, plate length-to-thickness ratio, and boundary conditions including Young’s modulus ratio.

Funder

Vietnam National University HoChiMinh City

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3