Affiliation:
1. Department of Civil Engineering, Shahed University, Tehran, Iran
2. Department of Civil Engineering, University of Kurdestan, Sanandaj, Iran
Abstract
In this paper, a novel optimization-based method is proposed to analyze steel space truss structures undergoing large deformations. The geometric nonlinearity is considered using the total Lagrangian formulation. The nonlinear solution is obtained by introducing and minimizing an objective function subjected to the displacement-type constraints. The proposed approach can fully follow the equilibrium path of the geometrically nonlinear space truss structures not only before the limit point, but also after it, namely, including both the pre- and post-buckling paths. Moreover, a direct estimation of the buckling loads and their corresponding displacements is possible by using the method. Particularly, it has been shown that the equilibrium path of a structure with highly nonlinear behavior, multiple limit points, snap-through, and snap-back phenomena can be traced via the proposed algorithm. To demonstrate the accuracy, validity, and robustness of the proposed procedure, four benchmark truss examples are analyzed and the results compared with those by the modified arc-length method and those reported in the literature.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献