Physical Interpretation of Principal Component Analysis for Structural Dynamics Through String Vibration

Author:

Ma Hong-Wei12,Lin Yi-Zhou13,Nie Zhen-Hua13

Affiliation:

1. College of Mechanics & Construction Engineering, Jinan University, Guangzhou, Guangdong, P. R. China

2. Dongguan University of Technology, Dongguan 523000, P. R. China

3. The Key Laboratory of Disaster Forecast and Control in Engineering, Ministry of Education of China, Guangzhou, Guangdong, P. R. China

Abstract

Principal component analysis (PCA) has been successfully applied in structural dynamics in recent years. However, it is usually used as a black-box, resulting in a gap between the application aspect and the physics essence of the problem. Thus a physical interpretation of PCA is necessary, along with further investigation, especially on the mechanism involved. This paper provides a physical meaning of the PCA by the theoretical analysis and numerical experiment on the vibration of a 1D string. Conditions that make the interpretation feasible were identified. The theoretical derivation and numerical simulation results indicate that the PCA gives a good estimation of the modal participation ratio in terms of energy, and the principal component coefficient (PCC) can be used to estimate the structural modes. The physical interpretation gives a new perspective on how the current methods work while providing the possibility of further application of the PCA related methods to structural dynamic problems.

Funder

the National Natural Science Foundation of China

the Guangzhou Science and Technology Planning Project

Innovation and Cultivation Fund of Central Colleges and Universities of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3