A Pyramidal Lattice Frame: Pathways to Inversion

Author:

Guan Yue1,Virgin Lawrence N.2

Affiliation:

1. Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA

2. Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA

Abstract

This paper considers the load–deflection behavior of a pyramid-like, shallow lattice structure. It consists of four beams that join at a central apex and when subject to a lateral load, it exhibits a propensity to snap-through: a classical buckling phenomenon. Whether this structural inversion occurs, and the routes by which it happens, depends sensitively on geometry. Given the often sudden nature of the instability, the behavior is also examined within a dynamics context. The outcome of numerical simulations are favorably compared with experimental data extracted from the testing of three-dimensional (3D)-printed specimens. The key contributions of this paper are that despite the continuous nature of the physical system, its behavior (transient and equilibria) can be adequately described using a discrete model, and the paper also illustrates the utility of 3D-printing in an accessible research context.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the elastic snapping of structural elements;International Journal of Non-Linear Mechanics;2023-03

2. Designing Hierarchical IsoTruss Column Based on Controlling Multi-Buckling Behaviors;International Journal of Structural Stability and Dynamics;2021-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3