MODELING WITH INCREASED EFFICIENCY AND VERSATILITY FOR FLEXURAL-TORSIONAL BUCKLING OF UNSYMMETRICAL THIN-WALLED STRUCTURES

Author:

MARZOUK S. S.1,GENDY A. S.1,MIKHAIEL S. N.1,SALEEB A. F.2

Affiliation:

1. Department of Structural Engineering, Faculty of Engineering, Cairo University, Egypt

2. Department of Civil Engineering, The University of Akron, Akron, Ohio, OH 44325-3905, USA

Abstract

Aiming at the performance-enhancement in coarse mesh modeling, we utilize a number of closed form solutions of a class of torsionally loaded thin-walled bars to formulate a two-noded element for spatial buckling analysis. The key in this relates to the use of the "exact" solution for the displacement fields (as oppose to the more conventional finite element approach where polynomial/Lagrangian-type interpolation is employed). That is, in addition to the well known "exact" solution for the coupled flexure/transverse-shear problem, we utilize a new "exact" solution for the more difficult case of coupled system of differential equations governing a torsionally loaded thin-walled beam using the higher-order theories of non-uniform twist/bi-moment with coupled warping-shear deformations. For the linear analysis, convergence and accuracy study indicated that the proposed model to be rapidly convergent, stable and computationally efficient; i.e. one element is sufficient to exactly represent an end loaded part of the beam. Such model has been extended to account for nonlinear analysis, in particular, the flexural torsional buckling of thin-walled structures. To this end, the effect of finite rotations in space is accounted for as per the modern theories of spatial buckling, resulting in second-order accurate geometric stiffness matrices. Compared with the classical theory of thin-walled structures, the present approach is more general in that all significant modes of stretching, bending, shear (due to both flexure and torsional/warping), torsion, and warping are accounted for. The inclusion of non-uniform torsion is accomplished through adoption of the principle sectorial area. This requires incorporation of a warping degree of freedom in addition to the conventional six degrees of freedom at each node. The element is derived for general cross sections including the Wagner-effect contributions. The model's properties and performance, particularly with regard to the resulting (significant) improvements in mesh accuracy, are assessed in a fairly complete set of numerical simulations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced model including moment-rotation dependency for stability of thin-walled structures;International Journal for Computational Methods in Engineering Science and Mechanics;2020-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3