Affiliation:
1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China
Abstract
This paper presents a unified method for analyzing the dynamic behavior of spinning beams under elastic constraints. Based on the Timoshenko beam theory, a dynamic model of a spinning beam with elastic constraints is established. The displacement and bending angle are represented by a modified Fourier series. Compared with the traditional Fourier series, the improved Fourier series eliminates the discontinuity of the derivative at the boundary by introducing auxiliary polynomials, making it more suitable for elastic constraints. The governing equations and boundary conditions are coupled together using the energy method to form a set of standard linear equations. By solving this equation, the modes of the spinning beam structure under elastic constraints can be concisely and quickly obtained. Finally, by comparing with other methods, it is proved that the method has good convergence and practicability. Then, the effects of spinning speed, boundary stiffness and slenderness ratio on the whirling characteristics are analyzed. The results show that the linear spring has a more pronounced effect on the whirl frequency than the torsion spring. Different boundary constraints produce different elastic intervals. Mode exchange was found with increasing spinning speed. In the case of elastic constraints, the mode exchange occurs at lower spinning speed. This method has a certain universal applicability to the dynamic analysis of spinning beams under elastic constraints, and the research results can provide theoretical reference for subsequent research.
Funder
National Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献