Affiliation:
1. Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, 721 302, India
Abstract
In this paper, a C o finite element has been employed for deriving an eigenvalue problem using higher order shear deformation theory. The uncertain material and geometric properties are modeled as basic random variables. A mean-centered first order perturbation technique is used to find the mean and standard derivation of the buckling temperature of laminated composite plates — subjected to a uniform temperature rise — with random material and geometric properties. The effects of the modulus ratio, fiber orientation, length-to-thickness ratio, aspect ratio and various boundary conditions on the critical temperature are examined. It is found that small variations in material and geometric properties of the composite plate significantly affect the buckling temperature of the laminated composite plate. The results have been validated with independent Monte Carlo simulation and those available in the literature.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献