REPEATED BUCKLING AND POSTBUCKLING BEHAVIOR OF LAMINATED STRINGER-STIFFENED COMPOSITE PANELS WITH AND WITHOUT DAMAGE

Author:

ABRAMOVICH HAIM1,WELLER TANCHUM1

Affiliation:

1. Faculty of Aerospace Engineering, Technion, IIT, Haifa, 32000, Israel

Abstract

Eight curved blade stringer-stiffened composite panels were tested under axial compression to obtain the "first" buckling and postbuckling behavior till collapse. Except for one panel, used as a reference panel, all of the panels had stringers without dropoff layers. Four panels contained either artificial damage or both artificial and impact-induced damage. Cyclic/repeated buckling was applied well in a relatively "deep" postbuckling region. It was demonstrated that neither repeated buckling, within the number of cycles applied in the present program, nor artificial damage and impact-induced damage, which were introduced into the panels, resulted in stiffness degradation of the panels. No premature failure of any of the tested panels was observed within their expected life cycle, i.e. exposure to a few hundred cycles deep in the postbuckling region, even in the presence of either type or a combination of the damage. All of the tested panels sustained repeated postbuckling loading till they were subjected to static loading aimed at determining their collapse loads. In spite of the present design, i.e. stiffeners with no dropoff plies aimed amongst others at providing a mechanism for initiating stiffener debonding, no skin–stringer separation was encountered till collapse of the panels. It was found that composite stringer-stiffened panels can be safely and repeatedly loaded in their deep postbuckling range with no degradation in their stiffness. Damage, due to either manufacturing or impact, which usually will result in rejection of a structural element, affected neither the load-carrying capacity nor the capability to withstand repeated loading in the relatively very deep postbuckling range within the present designed life cycle of the element. It was realized that manufacturing complexities and consequently costs can be reduced by employing a simplified design configuration where the use of a dropoff ply of the stringer base has been eliminated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3