Intelligent Surface Cracks Detection in Bridges Using Deep Neural Network

Author:

Zhang Xiaobo12,Luo Zhipeng1,Ji Jinghao1,Sun Yimin1,Tang Haihao1,Li Yongle2

Affiliation:

1. School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, P. R. China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 611756, P. R. China

Abstract

Cracking is one of the most common bridge diseases. If bridge cracks are not repaired: in time, they may cause gradual changes to the concrete structure, which can seriously affect its strength. A network called YOLOv5-TS is what we suggest to detect intelligently bridge surface cracks in images. To improve the network performance, we integrate SPPCSPC into the original YOLOv5 network to ensure adaptive image output and obtain receptive fields of various sizes. Meanwhile, transposed convolution is incorporated to improve the capacity of the network for learning weights on its own and reduce characteristic information loss. In response to the diverse morphology of bridge cracks, cracks are identified according to their mechanical causes crack inclination, and divided into four categories: horizontal cracks (0[Formula: see text]–20[Formula: see text]), low-angle cracks (20[Formula: see text]–45[Formula: see text]), vertical cracks (70[Formula: see text]–90[Formula: see text]) and high-angle cracks (45[Formula: see text]–70[Formula: see text]). Experiments on the ZJU SYG crack data set confirm that the proposed YOLOv5-TS has a better crack intelligent identification effect on bridge surface images than other compared baselines. The best performance of YOLOv5-TS is found in mAP@0.5 (0.752), mAP@0.5:0.95 (0.518), and recall (0.794), thus demonstrating the model’s practical value.

Funder

National Natural Science Foundation of China

Key Research and Development Program in Sichuan Province of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3