Affiliation:
1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, Hubei, P. R. China
Abstract
The most commonly used method for sampling damage parameters from the posterior distribution is the Markov chain Monte Carlo (MCMC) method. The population MCMC method as one of the MCMC methods has been utilized for damage identification by some researchers recently. Nevertheless, for the conventional population MCMC methods, these sampling methods often require significant computational resources and tuning of a large number of algorithm parameters. Aiming at the problem of difficulty in selecting the proposal distribution and low computational efficiency in the conventional MCMC method, this paper proposed a simple population Metropolis–Hastings (SP-MH) algorithm for the damage identification, which is realized by exchanging information among chains in a relatively small population and using tuning-free strategy. Then, a numerical cantilever beam and an experimental frame are utilized to verify the effectiveness and feasibility of the proposed algorithm, it can be seen that the convergence rate of the SP-MH algorithm is faster than that of the Differential Evolution Monte Carlo (DE-MC) algorithm, and in a small population state, the SP-MH algorithm can still maintain convergence, saving plenty of computing time for damage identification. The results show that the SP-MH algorithm is feasible and accurate in practice damage identification, and the SP-MH algorithm performs better than the DE-MC algorithm. Compared with the DE-MC algorithm, the SP-MH algorithm is simple and convenient for damage identification due to its tuning-free strategy and relatively small population.
Funder
National Natural Science Foundation of China
Outstanding Young and Middle-aged Scientific Innovation Team of Colleges and Universities of Hubei Province
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献