An Analytical Solution for Free Flexural Vibration of a Thin Cylindrical Shell Submerged in Acoustic Half-Space Bounded by a Free Surface

Author:

Wang Peng123,Li Tian-Yun123,Zhu Xiang123,Guo Wen-Jie123,Nie Rui123

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China

2. Collaborative Innovation Center for Advanced, Ship and Deep-Sea Exploration, Shanghai 200240, P. R. China

3. Hubei Key Laboratory of Naval Architecture & Ocean, Engineering Hydrodynamics, Wuhan 430074, P. R. China

Abstract

An analytical solution is proposed for the free flexural vibration of a finite cylindrical shell submerged in half-space bounded by a free surface in the low frequency range. The motion of the shell is described by the Flügge shell theory and the fluid surrounding the shell is assumed to be an acoustic media. The free surface effect is considered by satisfying the pressure release boundary condition. The accuracy of the present method is verified through comparison with the finite element solution. To throw light on the influence mechanism of free surface on the coupled modal frequencies, a modal added mass is introduced and calculated. Numerical results show that when the shell is close to the free surface, the presence of free surface will make a negative contribution to the modal added mass and finally result in the corresponding increase of the coupled modal frequencies. But the free surface effect will decrease when the immersion depth of the cylindrical shell increases. Finally, the free surface effect can be neglected if the immersion depth is higher than four times the shell radius. This conclusion is helpful to select proper test environment for an experiment on the dynamic characteristics of submerged cylindrical shells.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3