Dynamic Modeling and Analysis of a Rotating Piezoelectric Smart Beam

Author:

Lu En1,Li Wei1,Yang Xuefeng1,Wang Yuqiao1,Liu Yufei12

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, P. R. China

2. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China

Abstract

In active vibration control study, piezoelectric actuators and sensors are bonded on the surface of a beam. They can change the frequency and modal characteristics of the system. This paper presents an analysis of the frequency response to a rotating piezoelectric smart beam. Hamilton’s principle along with the assumed mode method are employed to derive the governing equations of the first-order approximate coupling model for the piezoelectric smart beam. The coupling is taken into account as the second-order coupling effect of the axial elongation caused by the transverse displacement of the beam. Then, the equations are transformed into a dimensionless form after identifying the necessary parameters. The dimensionless natural frequencies of the piezoelectric smart beam corresponding to the bending and stretching vibrations are obtained through a numerical simulation, with comparison made of those of the beam with no actuator or sensor. Furthermore, the implication is investigated of the structural parameters and bond location on the piezoelectric actuators and sensors. Besides, the common case of a smart beam bonded with multiple pairs of piezoelectric actuators and sensors is studied, and the effects of the first natural frequency and tip deformation are analyzed. The research provides a theoretical reference for the optimization of structural parameters and location of piezoelectric actuators and sensors, thereby preventing the resonance when the excitation frequency is approximately equal to the natural frequency of the beam.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3