Affiliation:
1. College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China
2. School of Computing, Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
Abstract
Cable-arch structures, having features of the flexibility of cable and rigidity of arch, have often been used in structural and bridge engineering. It is important to fully understand the behavior of such a structure under various conditions. For this purpose, in this paper, linear and nonlinear elastic buckling analysis of four cable-arch related structures, including tied cable-arch structure, pure arch, tied arch and cable-arch, were conducted using the finite element methods under different boundary and load conditions with the stability of these structures compared. Furthermore, the parametric analysis was carried out to investigate the influence of numbers and inclined angles of hangers and cables, materials of cables and stiffness of tie beam on the buckling behavior of tied cable-arch. The results indicate that the stability of pure arch and tied arch can be enhanced by anchoring cables on the arch rib due to the increase in stiffness. Moreover, the weaker the stiffness of an arch, the greater the cable’s contribution to structural stiffness. The stability of a tied cable-arch is quite sensitive to the inclined angle of hangers and cables, the number and materials of cables, and tie bar, but not to the fracture of two hangers. The study gives us a complete understanding of the elastic buckling behavior of circular tied cable-arch structures.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献