Affiliation:
1. Department of Civil Engineering and Xiamen Engineering Technology Center for Intelligent Maintenance of Infrastructures, Xiamen University, Xiamen, Fujian 361005, China
Abstract
A superconvergent isogeometric method is developed for the buckling analysis of thin beams and plates, in which the quadratic basis functions are particularly considered. This method is formulated through refining the quadrature rules used for the numerical integration of geometric and material stiffness matrices. The criterion for the quadrature refinement is the optimization of the buckling load accuracy under the assumption of harmonic buckling modes for thin beams and plates. The method development starts with the thin beam buckling analysis, where the material stiffness matrix with quadratic basis functions does not involve numerical integration and thus the refined quadrature rule for geometric stiffness matrix can be obtained in a relatively easy way. Subsequently, this refined quadrature rule for thin beam geometric stiffness matrix is conveniently generalized to the thin plate geometric stiffness matrix via the tensor product operation. Meanwhile, the refined quadrature rule for the thin plate material stiffness matrix is derived by minimizing the buckling load error. It turns out that the refined quadrature rule for the thin plate material stiffness matrix generally depends on the wave numbers of buckling modes. A theoretical error analysis for the buckling loads evinces that the isogeometric method with refined quadrature rules offers a fourth-order accurate superconvergent algorithm for buckling load computation, which is two orders higher than the standard isogeometric analysis approach. Numerical results well demonstrate the superconvergence of the proposed method for the buckling loads corresponding to harmonic buckling modes, and for those related with non-harmonic modes, the buckling loads given by the proposed method are also much more accurate than their counterparts produced by the conventional isogeometric analysis.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献