Dynamic Analysis of the Hangers in High-Speed Railway Arch Bridge Based on Train–Bridge Interaction Simulation and Field Measurement

Author:

Li Huile123,Yan Huan123,Wu Gang123

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China

2. National and Local Joint Engineering Research Center for Intelligent Construction and Maintenance, Southeast University, Nanjing, Jiangsu 211189, P. R. China

3. School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China

Abstract

The hangers represent the crucial load-bearing component of arch bridges and are susceptible to dynamic vehicle load. However, little effort has been made to carry out dynamic analysis of arch bridge hangers under high-speed train loads. This paper presents an investigation of the dynamic behavior of the arch bridge subjected to high-speed train with emphasis on the flexible hangers, using train–bridge interaction simulation and field measurement data. Coupled train–bridge system model composed of three-dimensional train model, bridge model, and wheel–rail interaction model is established to account for hanger transverse vibration, spatial train loading, and track irregularity excitation, among others. Vibration data of bridge components including the hanger are measured through field test on a typical high-speed railway tied-arch bridge. A total stress-based dynamic amplification factor is subsequently proposed to describe the effect of hanger transverse vibration. The influence of significant parameters such as train speed and track irregularity on the dynamic effects of hangers is examined by the experimentally validated train–bridge interaction model. It is found that the dynamic responses of the hangers are considerably different from bridge global responses. In-plane and out-of-plane transverse vibrations of the hanger result in a large increase in the hanger dynamic effects which prove to be sensitive to train speed, track irregularity, train loading position, etc. Moreover, the dynamic amplification factor formula in the current high-speed railway code may not be sufficient to characterize the dynamic amplification of hangers under operating conditions.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3