Engineering Reliability-Based Condition Assessment for Stay Cables Using Non-Destructive Interferometric Radar

Author:

Chen Shilun12ORCID,Chen Da34ORCID,Sannasiraj Rishwanth Darun Annamalaisamy3ORCID,Zhang Lihai3ORCID

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing, 400045, P. R. China

2. Chongqing Hi-Tech Development and Construction, Investment Group Co.,Ltd, Chongqing, 400039, P. R. China

3. Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia

4. Centre for Infrastructure Engineering and Safety (CIES), School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Structural health monitoring (SHM) of cable-stayed bridges requires periodic assessment for the deteriorating stay cables to ensure a long-term service life of the bridge. However, conducting the non-destructive SHM for operating cable-stayed bridges and analyzing the safety statuses of all the working cables are still challenging, due to the lack of in situ cable data for previously constructed bridges. This study developed an innovative framework of health condition assessment for stay cables based on cable vibration frequencies from an interferometric radar (IBIS-FS) using engineering reliability analysis (ERA). Taking a cable-stayed bridge in Victoria, Australia as a target structure for the case study, it shows that the presented framework can remotely monitor the accurate real-time load bearing conditions of stay cables by calculating tension forces, and effectively assess their health conditions. The results show that the natural frequency (up to the fifth mode) of a healthy cable remains constant under different external loadings but varies for damaged cables. The measured reliability index of all the stay cables is higher than the safety threshold factor at ultimate limit states, while one carries tension force higher than the maximum design load (lower than the minimum breaking load) and other three cables need to be monitored regularly due to their low reliability indices. This is attributed to an integrated effect of applied tension force, cable diameters, and minimum breaking loads.

Funder

Australian Research Council

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3