Affiliation:
1. Department of Information Systems, Eötvös Loránd University, Pázmány Péter sétány 1/C Budapest, 1117, Hungary
Abstract
For decades, centrality has been one of the most studied concepts in the case of complex networks. It addresses the problem of identification of the most influential nodes in the network. Despite the large number of the proposed methods for measuring centrality, each method takes different characteristics of the networks into account while identifying the “vital” nodes, and for the same reason, each has its advantages and drawbacks. To resolve this problem, the TOPSIS method combined with relative entropy can be used. Several of the already existing centrality measures have been developed to be effective in the case of static networks, however, there is an ever-increasing interest to determine crucial nodes in dynamic networks. In this paper, we are investigating the performance of a new method that identifies influential nodes based on relative entropy, in the case of dynamic networks. To classify the effectiveness, the Suspected-Infected model is used as an information diffusion process. We are investigating the average infection capacity of ranked nodes, the Time-Constrained Coverage as well as the Cover Time.
Funder
the European Union, co-financed by the European Social Fund
Publisher
World Scientific Pub Co Pte Lt
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献