Affiliation:
1. Multimedia, Information Systems and Advanced, Computing Laboratory (MIRACL) Digital Research Center of Sfax, CRNS, Sfax University, Sfax Technopark, Sfax, Tunisia
Abstract
The spread of real-time applications has led to a huge amount of data shared between users. This vast volume of data rapidly evolving over time is referred to as data stream. Clustering and processing such data poses many challenges to the data mining community. Indeed, traditional data mining techniques become unfeasible to mine such a continuous flow of data where characteristics, features, and concepts are rapidly changing over time. This paper presents a novel method for data stream clustering. In this context, major challenges of data stream processing are addressed, namely, infinite length, concept drift, novelty detection, and feature evolution. To handle these issues, the proposed method uses the Artificial Immune System (AIS) meta-heuristic. The latter has been widely used for data mining tasks and it owns the property of adaptability required by data stream clustering algorithms. Our method, called AIS-Clus, is able to detect novel concepts using the performance of the learning process of the AIS meta-heuristic. Furthermore, AIS-Clus has the ability to adapt its model to handle concept drift and feature evolution for textual data streams. Experimental results have been performed on textual datasets where efficient and promising results are obtained.
Publisher
World Scientific Pub Co Pte Lt
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献