AIS-Clus: A Bio-Inspired Method for Textual Data Stream Clustering

Author:

Abid Amal1,Jamoussi Salma1,Hamadou Abdelmajid Ben1

Affiliation:

1. Multimedia, Information Systems and Advanced, Computing Laboratory (MIRACL) Digital Research Center of Sfax, CRNS, Sfax University, Sfax Technopark, Sfax, Tunisia

Abstract

The spread of real-time applications has led to a huge amount of data shared between users. This vast volume of data rapidly evolving over time is referred to as data stream. Clustering and processing such data poses many challenges to the data mining community. Indeed, traditional data mining techniques become unfeasible to mine such a continuous flow of data where characteristics, features, and concepts are rapidly changing over time. This paper presents a novel method for data stream clustering. In this context, major challenges of data stream processing are addressed, namely, infinite length, concept drift, novelty detection, and feature evolution. To handle these issues, the proposed method uses the Artificial Immune System (AIS) meta-heuristic. The latter has been widely used for data mining tasks and it owns the property of adaptability required by data stream clustering algorithms. Our method, called AIS-Clus, is able to detect novel concepts using the performance of the learning process of the AIS meta-heuristic. Furthermore, AIS-Clus has the ability to adapt its model to handle concept drift and feature evolution for textual data streams. Experimental results have been performed on textual datasets where efficient and promising results are obtained.

Publisher

World Scientific Pub Co Pte Lt

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Literature Review of Novelty Detection in Data Streams: Challenges and Opportunities;ACM Computing Surveys;2024-05-14

2. Performance Evaluation of Data Stream Clustering Algorithm on Parameter Specification;The 6th International Conference on Wireless, Intelligent and Distributed Environment for Communication;2023-12-21

3. Automating model management: a survey on metaheuristics for concept-drift adaptation;Journal of Data, Information and Management;2022-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3