Parkinson’s Disease Diagnostics Based on the Analysis of Digital Sentence Writing Test

Author:

Netšunajev Aleksei1,Nõmm Sven2,Toomela Aaro3,Medijainen Kadri4,Taba Pille5

Affiliation:

1. Tallinn University of Technology, Akadeemia tee 3, Tallinn 12618, Estonia

2. Department of Software Science, Tallinn University of Technology, Akadeemia tee 15a, Tallinn 12618, Estonia

3. School of Natural Sciences and Health, Tallinn University, Narva mnt. 25, Tallinn 10120, Estonia

4. Institute of Sport Sciences Physiotherapy, University of Tartu, Puusepa 8, Tartu 51014, Estonia

5. Department of Neurology and Neurosurgery, University of Tartu, Puusepa 8, Tartu 51014, Estonia

Abstract

Analysis of the sentence writing test is conducted in this paper to support diagnostics of the Parkinsons disease. Drawing and writing tests digitization has become a trend where synergy of machine learning techniques on the one side and knowledge base of the neurology and psychiatry on the other side leading sophisticated result in computer aided diagnostics. Such rapid progress has a drawback. In many cases, decisions made by machine learning algorithm are difficult to explain in a language human practitioner familiar with. The method proposed in this paper employs unsupervised learning techniques to segment the sentence into the individual characters. Then, feature engineering process is applied to describe writing of each letter using a set of kinematic and pressure parameters. Following feature selection process applicability of different machine learning classifiers is evaluated. To guarantee that achieved results may be interpreted by human, two major guidelines are established. The first one is to keep dimensionality of the feature set low. The second one is clear physical meaning of the features describing the writing process. Features describing amount and smoothness of the motion observed during the writing alongside with letter size are considered. Resulting algorithm does not take into account any semantic information or language particularities and therefore may be easily adopted to any language based on Latin or Cyrillic alphabets.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3