IoT Botnet Detection Using Various One-Class Classifiers

Author:

Raj Mehedi Hasan1,Rahman A. N. M. Asifur1,Akter Umma Habiba1,Riya Khayrun Nahar1,Nijhum Anika Tasneem1,Rahman Rashedur M.1

Affiliation:

1. Department of Electrical and Computer Engineering, North South University, Plot 15, Block-B, Bashundhara, Dhaka 1229, Bangladesh

Abstract

Nowadays, the Internet of Things (IoT) is a common word for the people because of its increasing number of users. Statistical results show that the users of IoT devices are dramatically increasing, and in the future, it will be to an ever-increasing extent. Because of the increasing number of users, security experts are now concerned about its security. In this research, we would like to improve the security system of IoT devices, particularly in IoT botnet, by applying various machine learning (ML) techniques. In this paper, we have set up an approach to detect botnet of IoT devices using three one-class classifier ML algorithms. The algorithms are: one-class support vector machine (OCSVM), elliptic envelope (EE), and local outlier factor (LOF). Our method is a network flow-based botnet detection technique, and we use the input packet, protocol, source port, destination port, and time as features of our algorithms. After a number of preprocessing steps, we feed the preprocessed data to our algorithms that can achieve a good precision score that is approximately 77–99%. The one-class SVM achieves the best accuracy score, approximately 99% in every dataset, and EE’s accuracy score varies from 91% to 98%; however, the LOF factor achieves lowest accuracy score that is from 77% to 99%. Our algorithms are cost-effective and provide good accuracy in short execution time.

Publisher

World Scientific Pub Co Pte Lt

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adversarial Attacks on Deep Learning-Based Network Intrusion Detection Systems: A Taxonomy and Review;2024

2. IoT botnet attack detection using deep autoencoder and artificial neural networks;KSII Transactions on Internet and Information Systems;2023-05-31

3. An NIDS for Known and Zero-Day Anomalies;2023 19th International Conference on the Design of Reliable Communication Networks (DRCN);2023-04-17

4. One-Class Support Vector Machine with Particle Swarm Optimization for Geo-Acoustic Anomaly Detection;2021 17th International Conference on Mobility, Sensing and Networking (MSN);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3