Business Process Model Abstraction Based on Fuzzy Clustering Analysis

Author:

Wang Nan1ORCID,Sun Shanwu1,Liu Ying1,Zhang Senyue2

Affiliation:

1. College of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, P. R. China

2. College of Economics and Management, Shenyang Aerospace University, Shenyang 110136, P. R. China

Abstract

The most prominent Business Process Model Abstraction (BPMA) use case is a construction of a process “quick view” for rapidly comprehending a complex process. Researchers propose various process abstraction methods to aggregate the activities most of which are based on [Formula: see text]-means hard clustering. This paper focuses on the limitation of hard clustering, i.e. it cannot identify the special activities (called “edge activities” in this paper) and each activity must be classified to some subprocess. A new method is proposed to classify activities based on fuzzy clustering which generates a fuzzy matrix by computing the possibilities of activities belonging to subprocesses. According to this matrix, the “edge activities” can be located. Considering the structure correlation feature of the activities in subprocesses, an approach is provided to generate the initial clusters based on the close connection characteristics of subprocesses. A hard partition algorithm is proposed to classify the edge activities and it evaluates the generated abstract models according to a new index designed by control flow order preserving requirement and the evaluation results guide the edge activities to be classified to the optimal hard partition. The proposed method is applied to a process model repository in use. The results verify the validity of the measurement based on the virtual document to generating fuzzy matrix. Also it mines the threshold parameter in the real world process model collection enriched with human designed subprocesses to compute the fuzzy matrix. Furthermore, a comparison is made between the proposed method and the [Formula: see text]-means clustering and the results show our approach more closely approximating the decisions of the involved modelers to cluster activities and it contributes to the development of modeling support for effective process model abstraction.

Funder

NSFC

Science and Technology Development Plan

Jilin Social Science Foundation Project

Jilin Province Science and Technology Development Plan

Open Project of Laboratory of Logistics Industry Economy and Intelligent Logistics

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3