Deep Learning Modified Reinforcement Learning with Virtual Machine Consolidation for Energy-Efficient Resource Allocation in Cloud Computing

Author:

Dutta Chiranjit1ORCID,Rani R. M.2ORCID,Jain Amar3ORCID,Poonguzhali I.4ORCID,Salunke Dipmala5ORCID,Patel Ruchi6ORCID

Affiliation:

1. Department of CSE, SRM Institute of Science and Technology, NCR Campus, Ghaziabad 201204, Uttar Pradesh, India

2. Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai 600089, Tamil Nadu, India

3. Department of Civil Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Ramapuram, Chennai 600089, Tamil Nadu, India

4. Department of ECE, Panimalar Engineering College, Poonamallee, Chennai 600123, Tamil Nadu, India

5. JSPM’s Rajarshi Shahu College of Engineering, Tathawade, Pune 411033, Maharashtra, India

6. Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India

Abstract

Cloud computing has attracted significant attention because of the growing service demands of businesses that outsource computationally intensive tasks to the data center. Meanwhile, the infrastructure of a data center is comprised of hardware resources that consume a great deal of energy and release harmful levels of carbon dioxide. Cloud data centers demand massive amounts of electrical power as modern applications and organizations grow. To prevent resource waste and promote energy efficiency, virtual machines (VMs) must be dispersed over numerous physical machines (PMs) in a data center in the cloud. The actual allocation of VMs to PMs can involve more complex decision-making processes, such as considering the resource utilization, load balancing, performance requirements, and constraints of the system. Advanced techniques, like intelligent placement algorithms or dynamic resource allocation, may be employed to optimize resource utilization and achieve efficient VM distribution across multiple PMs. Cloud service suppliers aim to lower operational expenses by reducing energy consumption while offering clients competitive services. Minimizing large-scale data center power usage while maintaining the quality of service (QoS), especially for social media-based cloud computing systems, is crucial. Consolidating VMs has been highlighted as a promising method for improving resource efficiency and saving energy in data centers. This research provides deep learning augmented reinforcement learning (RL)-based energy efficient and QoS-aware virtual machine consolidation (VMC) approach to meet the difficulties. The proposed deep learning modified reinforcement learning-virtual machine consolidation (DLMRL-VMC) model can motivate both cloud providers and customers to distribute cloud infrastructure resources to achieve high CPU utilization and good energy efficiency as measured by power usage effectiveness (PUE) and data center infrastructure efficiency (DCiE). The suggested model, DLMRL-VMC, offers a VM placement approach based on resource usage and dynamic energy consumption to determine the best-matched host and VM selection strategy, Average Utilization Migration Time (AUMT). Based on AUMT, deep learning modified reinforcement learning (DLMRL) will choose a VM with a low average CPU utilization and a short migration time. The DLMRL-VMC Energy-efficient, Resource Allocation strategy is evaluated on the trace of the CloudSim VM to attain good PUE and CPU utilization.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3