Affiliation:
1. Distributed Systems Group, Vienna University of Technology, Argentinierstrasse 8, A-1040 Vienna, Austria
2. Department of Computer Science, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus
Abstract
To optimize the cost and performance of complex cloud services under dynamic requirements, workflows and diverse cloud offerings, we rely on different elasticity control processes. An elasticity control process, when being enforced, produces effects in different parts of the cloud service. These effects normally evolve in time and depend on workload characteristics, and on the actions within the elasticity control process enforced. Therefore, understanding the effects on the behavior of the cloud service is of utter importance for runtime decision-making process, when controlling cloud service elasticity. In this paper, we present a novel methodology and a framework for estimating and evaluating cloud service elasticity behaviors. To estimate the elasticity behavior, we collect information concerning service structure, deployment, service runtime, control processes, and cloud infrastructure. Based on this information, we utilize clustering techniques to identify cloud service elasticity behavior, in time, and for different parts of the service. Knowledge about such behavior is utilized within a cloud service elasticity controller to substantially improve the selection and execution of elasticity control processes. These elasticity behavior estimations are successfully being used by our elasticity controller, in order to improve runtime decision quality. We evaluate our framework with three real-world cloud services in different application domains. Experiments show that we are able to estimate the behavior in 89.5% of the cases. Moreover, we have observed improvements in our elasticity controller, which takes better control decisions, and does not exhibit control oscillations.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献