AI-Assisted Enhanced Composite Metric-Based Intrusion Detection System for Secured Cyber Internet Security for Next-Generation Wireless Networks

Author:

Samha Amani K.1ORCID,Alshammri Ghalib H.2ORCID,Attuluri Sasidhar3ORCID,Suman Preetam4ORCID,Yadav Arvind5ORCID

Affiliation:

1. Management Information System Department, College of Business Administration, King Saud University Riyadh 28095, Saudi Arabia

2. Department of Computer Science, Community College, King Saud University, Riyadh 11437, Saudi Arabia

3. Savin Technologies Inc., 9901 Valley Ranch Pkwy E, Irving, TX, 75063, USA

4. CSE-Core, School of Computing Science and Engineering, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh – 466114, India

5. Department of Computer Science and Engineering, SRM University, Delhi-NCR Sonepat 131029, India

Abstract

The prevalence of distributed denial of service (DDoS) flooding assaults is one of the most serious risks to cloud computing security. These types of assaults have as their primary objective the exhaustion of the system’s available resources, that is, the target of the attack, in order to make the system in question unavailable to authorized users. Internet thieves often conduct flooding assaults of the kind known as DDoS, focusing primarily on the application and network levels. When the computer infrastructure is multi-mesh-geo distributed, includes multi-parallel services, and a high number of domains, it may be difficult to detect assaults. This is particularly true when a substantial number of domains are present. When there are a big number of independent administrative users using the services, the situation gets more complicated. The purpose of this body of research is to identify signs that may be utilized to detect DDoS flooding assaults; this is its main objective. As a result, throughout the course of our study, we established a composite metric that considers application, system, network, and infrastructure elements as possible indicators of the incidence of DDoS assaults. According to our research, DDoS assaults may be triggered by a combination of variables. Investigations of simulated traffic are being conducted in the cloud. High traffic may be the result of flooding assaults. The composite metric-based intrusion detection system will be the name of a one-of-a-kind intrusion detection system (IDS) that has been agreed upon ICMIDS. This system will use [Formula: see text]-Means clustering and the Genetic Algorithm (GA) to detect whether an effort has been made to flood the cloud environment. CMIDS employs a multi-threshold algorithmic strategy in order to identify malicious traffic occurring on a cloud-based network. Cisco has created this technology. This strategy necessitates a comprehensive investigation of all factors, which is crucial for assuring the continuation of cloud-based computing-based activities. This monitoring system involves the development, administration, and storage of a profile database, denoted as Profile DB. This database is used for recording and using the composite metric for each virtual machine. The results of a series of tests are compared to the ISCX benchmark dataset and statistical settings. The results indicate that ICMIDS has a reasonably high detection rate and the lowest false alarm rate in the majority of situations examined during the series of tests done to validate and verify its efficacy. This was shown by the fact that ICMIDS had the lowest false alarm rate among all examined conditions.

Funder

Deanship of Scientific Research, King Khalid University

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3