Deep Belief Network-Based User and Entity Behavior Analytics (UEBA) for Web Applications

Author:

Deepa S.1,Umamageswari A.1,Neelakandan S.2,Bhukya Hanumanthu3,Sai Lakshmi Haritha I. V.4,Shanbhog Manjula5

Affiliation:

1. Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram Campus, Chennai, Tamil Nadu, India

2. Department of Computer Science and Engineering, R.M.K Engineering College, Kavaraipettai, Chennai, Tamil Nadu, India

3. Department of Computer Science and Engineering (Networks), Kakatiya Institute of Technology and Science, Warangal Telangana, India

4. Department of Information Technology, MLR Institute of Technology, Hyderabad, Telangana, India

5. Department of Sciences, CHRIST (Deemed to be University), Delhi NCR, Ghaziabad, Uttar Pradesh 201003, India

Abstract

Machine learning (ML) is currently a crucial tool in the field of cyber security. Through the identification of patterns, the mapping of cybercrime in real time, and the execution of in-depth penetration tests, ML is able to counter cyber threats and strengthen security infrastructure. Security in any organization depends on monitoring and analyzing user actions and behaviors. Due to the fact that it frequently avoids security precautions and does not trigger any alerts or flags, it is much more challenging to detect than traditional malicious network activity. ML is an important and rapidly developing anomaly detection field in order to protect user security and privacy, a wide range of applications, including various social media platforms, have incorporated cutting-edge techniques to detect anomalies. A social network is a platform where various social groups can interact, express themselves, and share pertinent content. By spreading propaganda, unwelcome messages, false information, fake news, and rumours, as well as by posting harmful links, this social network also encourages deviant behavior. In this research, we introduce Deep Belief Network (DBN) with Triple DES, a hybrid approach to anomaly detection in unbalanced classification. The results show that the DBN-TDES model can typically detect anomalous user behaviors that other models in anomaly detection cannot.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Convolutional Generative Adversarial Network-Based Plant Disease Detection And Classification Using Particle Swarm Optimization Algorithms;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3