Privacy-Preserving Wireless Sensor Networks for E-Healthcare Applications

Author:

Samha Amani K.1ORCID,Alshammri Ghalib H.2ORCID,Pani Niroj Kumar3,Misra Yogesh4,Kolluru Venkata Ratnam5

Affiliation:

1. Management Information System Department, College of Business Administration King Saud University, Riyadh 28095, Saudi Arabia

2. Department of Computer Science, Community College, King Saud University, Riyadh 11437, Saudi Arabia

3. Department of Computer Science Engineering and Applications, Indira Gandhi Institute of Technology, Sarang 759146, Odisha, India

4. Department of Electronics and Communication Engineering, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India

5. Department of IoT, Koneru Lakshmaiah Education Foundation Vaddeswaram, Andhra Pradesh, India

Abstract

Wireless sensor networks (WSNs) are a powerful support system for the fundamental infrastructure that is required to monitor physiological and activity parameters (WSN). Wearable devices, which are also referred to as wireless nodes in the scientific world, are what are used in order to measure one or more of the user’s vital signs. Each and every wireless node is a teeny-tiny device that is meant to be supplied with enough amounts of storage space, power, and transmission capability. The loss of data packets may occur during the transmission of data via a wireless medium for a number of reasons. These reasons include interferences, improper deployment circumstances, distance, and inadequate signal strength. The monitoring of a user’s physiological information and postural activity information in various applications, such as home care and hospital care, is the primary emphasis of this study. In this work, the WSN was shown thanks to the introduction of wireless sensor nodes that were created locally. These wireless sensor nodes are used in the process of analyzing many aspects of a network, such as the received signal strength, transmission offset, packet delivery ratio (PDR), and signal-to-noise interference. The work significantly improves the capabilities of conventional WSN by implementing a variety of alternative communication approaches, such as network-coded cooperative communication (NC-CC) and cooperative communication (CC). The system that is being shown makes it feasible to localize the user’s approximate position inside an indoor setting without making use of any camera network connections. This is made possible by the system’s ability to determine the user’s location via triangulation. This is one of the benefits that the system provides. A hospital sensor network, an example of which is being shown here, is capable of doing real-time monitoring of a patient’s postural activity as well as their general health. The method is being promoted in order to ensure that the patient will get assistance in a timely manner that is adequate to his/her needs. Involving NC-CC enables the effective sharing of real-time data among the group of privileged duty nurses while simultaneously minimizing the amount of network traffic, latency, and throughput. This is possible because of NC-CC protocol. The findings of the experiments showed that the proposed method of communication, which is known as dynamic retransmit/rebroadcast decision control, is a significant advancement in the network coding approach that is presently being utilized. This was demonstrated by the fact that the method was shown to be significantly more effective.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3