Multi-Factor Synthesis Decision-Making for Trust-Based Access Control on Cloud

Author:

Riad Khaled12,Yan Zhu1ORCID

Affiliation:

1. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China

2. Mathematics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

Abstract

Providing a creditable basis for access control decision-making is not an easy task for the resource pooling, dynamic, and multi-tenant cloud environment. The trust notation can provide this creditable basis, based on multiple factors that can accurately compute the user’s trust for the granting access entity. In this paper, the formal trust model has been introduced, which presents a novel method to provide the basis for granting access. It is based on three factors and their semantic relations, which investigate important measures for the cloud environment. Also, a new Trust-Based Access Control (TB-AC) model has been proposed. The proposed model supports dynamically changing the user’s assigned permissions based on its trust level. In addition, TB-AC ensures secure resource sharing among potential untrusted tenants. TB-AC has been deployed on a separated VM in our private cloud environment, which is built using OpenStack. The experimental results indicated that TB-AC can evaluate access requests within reasonable and acceptable processing times, which is based on the final trust level calculation and the communication between TB-AC and some of the intended OpenStack services. By considering very rough conditions and huge traffic overhead, the final trust level can be calculated in an average time of 200[Formula: see text]ms. Furthermore, the communication overhead between TB-AC and each of Keystone, Nova, and Neutron is very light. Finally, TB-AC has been tested under different scenarios and is provable, usable and scalable.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Information Systems

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identity-Based Access Control in IoT: Enhancing Security through Mutual Cryptographic Authentication and Context Awareness;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04

2. An intelligent system with fuzzy-based inference engine for secured tele-robotic surgery;Healthcare Analytics;2023-12

3. Understanding Security Challenges and Defending Access Control Models for Cloud-Based Internet of Things Network;Internet of Things. Advances in Information and Communication Technology;2023-10-26

4. Research and Application of Grid Cloud Service Security Access Control Technology Based on Zero Trust Model;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

5. Blockchain DrivenAccess control architecture for the internet of things;Multimedia Tools and Applications;2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3