Pinwheels as Lagrangian barriers

Author:

Brendel Joé1,Schlenk Felix2

Affiliation:

1. School of Mathematical Sciences, Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel

2. Institut de Mathématiques, Université de Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland

Abstract

The complex projective plane [Formula: see text] contains certain Lagrangian CW-complexes called pinwheels, which have interesting rigidity properties related to solutions of the Markov equation, see for example [J. Evans and I. Smith, Markov numbers and Lagrangian cell complexes in the complex projective plane, Geom. Topol. 22 (2018) 1143–1180]. We compute the Gromov width of the complement of pinwheels and show that it is strictly smaller than the Gromov width of [Formula: see text], meaning that pinwheels are Lagrangian barriers in the sense of [P. Biran, Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal. 11 (2001) 407–464]. The accumulation points of the set of these Gromov widths are in a simple bijection with the Lagrange spectrum below [Formula: see text].

Funder

Israel Science Foundation

ERC Starting

Swiss National Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the existence of symplectic barriers;Selecta Mathematica;2024-07-03

2. Hofer–Zehnder capacity of disc tangent bundles of projective spaces;Journal of the London Mathematical Society;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3