Approximating the covariance ellipsoid

Author:

Mendelson Shahar12

Affiliation:

1. Mathematical Sciences Institute, The Australian National University, Canberra, Australia

2. Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université, Paris, France

Abstract

We explore ways in which the covariance ellipsoid [Formula: see text] of a centered random vector [Formula: see text] in [Formula: see text] can be approximated by a simple set. The data one is given for constructing the approximating set is [Formula: see text] that are independent and distributed as [Formula: see text]. We present a general method that can be used to construct such approximations and implement it for two types of approximating sets. We first construct a set [Formula: see text] defined by a union of intersections of slabs [Formula: see text] (and therefore [Formula: see text] is actually the output of a simple neural network). We show that under minimal assumptions on [Formula: see text] (e.g. [Formula: see text] can be heavy-tailed) it suffices that [Formula: see text] to ensure that [Formula: see text]. In some cases (e.g. if [Formula: see text] is rotation invariant and has marginals that are well behaved in some weak sense), a smaller sample size suffices: [Formula: see text]. We then show that if the slabs are replaced by well-chosen ellipsoids, the same degree of approximation is true when [Formula: see text]. The construction is based on the small-ball method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multivariate mean estimation with direction-dependent accuracy;Journal of the European Mathematical Society;2023-01-27

2. Stable Recovery and the Coordinate Small-Ball Behaviour of Random Vectors;Lecture Notes in Mathematics;2023

3. Approximating L unit balls via random sampling;Advances in Mathematics;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3