Affiliation:
1. Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA
Abstract
We show that the sharp constants of Poincaré–Sobolev inequalities for any smooth two dimensional Riemannian manifold are less than or equal to [Formula: see text]. For a smooth topological two sphere M2, the sharp constants are [Formula: see text] if and only if M2is isometric to two sphere S2with the standard metric. In the same spirit, we show that for certain special smooth topological sphere the ratio between the shortest length of simple closed geodesics and the square root of its area is less than or equals to [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献