An improved Aleksandrov–Bakel’man–Pucci estimate for a second-order elliptic operator with unbounded drift

Author:

Cho Sungwon1

Affiliation:

1. Department of Mathematics Education, Gwangju National University of Education, 55 Pilmundaero Buk-gu, Gwangju 61204, Republic of Korea

Abstract

The classical Aleksandrov–Bakel’man–Pucci estimate (ABP estimate) for a second-order elliptic operator in nondivergence form is one of the fundamental tools for the bounds of subsolutions. Cabre improved the ABP estimate by replacing a constant factor, the diameter of a given domain, with a geometric character, which can be defined and finite for some unbounded domains. In the proof, Cabre used the Krylov–Safonov boundary weak Harnack inequality from Trudinger; thus, it is required that the first-order coefficients belong to a Lebesgue [Formula: see text]-integrable function space. Using a growth lemma from Safonov and an approximation method, we improve the result to Lebesgue [Formula: see text]-integrable first-order coefficients, which is optimal and coincides with the condition for the original ABP estimate.

Funder

the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3