A generalization of Turaev’s virtual string cobracket and self-intersections of virtual strings

Author:

Cahn Patricia12

Affiliation:

1. Smith College, Northampton, MA 01063, USA

2. Max Planck Institute for Mathematics, Vivatsgasse 7, Bonn 53111, Germany

Abstract

Previously we defined an operation [Formula: see text] that generalizes Turaev’s cobracket for loops on a surface. We showed that, in contrast to the cobracket, this operation gives a formula for the minimum number of self-intersections of a loop in a given free homotopy class. In this paper, we consider the corresponding question for virtual strings, and conjecture that [Formula: see text] gives a formula for the minimum number of self-intersection points of a virtual string in a given virtual homotopy class. To support the conjecture, we show that [Formula: see text] gives a bound on the minimal self-intersection number of a virtual string which is stronger than a bound given by Turaev’s virtual string cobracket. We also use Turaev’s based matrices to describe a large set of strings [Formula: see text] such that [Formula: see text] gives a formula for the minimal self-intersection number [Formula: see text]. Finally, we compare the bound given by [Formula: see text] to a bound given by Turaev’s based matrix invariant [Formula: see text], and construct an example that shows the bound on the minimal self-intersection number given by [Formula: see text] is sometimes stronger than the bound [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parity on based matrices;Journal of Knot Theory and Its Ramifications;2022-02

2. Complexity of virtual multistrings;Communications in Contemporary Mathematics;2021-08-24

3. Multistring based matrices;Journal of Knot Theory and Its Ramifications;2020-05

4. Minimizing intersection points of curves under virtual homotopy;Journal of Knot Theory and Its Ramifications;2020-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3