On the number of real roots of random polynomials

Author:

Nguyen Hoi1,Nguyen Oanh2,Vu Van2

Affiliation:

1. Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

2. Department of Mathematics, Yale University, New Haven, CT 06520, USA

Abstract

Roots of random polynomials have been studied intensively in both analysis and probability for a long time. A famous result by Ibragimov and Maslova, generalizing earlier fundamental works of Kac and Erdős–Offord, showed that the expectation of the number of real roots is [Formula: see text]. In this paper, we determine the true nature of the error term by showing that the expectation equals [Formula: see text]. Prior to this paper, the error term [Formula: see text] has been known only for polynomials with Gaussian coefficients.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linearized fluctuating hydrodynamics via random polynomials;Physical Review D;2024-09-11

2. Exponential concentration for the number of roots of random trigonometric polynomials;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-05-01

3. Random orthonormal polynomials: Local universality and expected number of real roots;Transactions of the American Mathematical Society;2023-06-13

4. Counting Zeros of Random Functions;The American Mathematical Monthly;2023-05-17

5. Real zeros of random trigonometric polynomials with $\ell$-periodic coefficients;Colloquium Mathematicum;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3