Affiliation:
1. Beijing International Center for Mathematical Research, Beijing University, Beijing 100871, P. R. China
Abstract
Let Mn be an n-dimensional Riemannian manifold with boundary ∂M. Assuming that Ricci curvature is bounded from below by (n - 1)k, for k ∈ ℝ, we give a sharp estimate of the upper bound of ρ(x) = d (x, ∂M), in terms of the mean curvature bound of the boundary. When ∂M is compact, the upper bound is achieved if and only if M is isometric to a disk in space form. A Kähler version of estimation is also proved. Moreover, we prove a Laplacian comparison theorem for distance function to the boundary of Kähler manifold and also estimate the first eigenvalue of the real Laplacian.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献