On simple eigenvalues of the fractional Laplacian under removal of small fractional capacity sets

Author:

Abatangelo Laura1,Felli Veronica1,Noris Benedetta2

Affiliation:

1. Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy

2. LAMFA: Laboratoire Amiénois de Mathématique, Fondamentale et Appliquée, UPJV Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France

Abstract

We consider the eigenvalue problem for the restricted fractional Laplacian in a bounded domain with homogeneous Dirichlet boundary conditions. We introduce the notion of fractional capacity for compact subsets, with the property that the eigenvalues are not affected by the removal of zero fractional capacity sets. Given a simple eigenvalue, we remove from the domain a family of compact sets which are concentrating to a set of zero fractional capacity and we detect the asymptotic expansion of the eigenvalue variation; this expansion depends on the eigenfunction associated to the limit eigenvalue. Finally, we study the case in which the family of compact sets is concentrating to a point.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Morrey's inequality in Sobolev-Slobodeckiĭ spaces;Journal of Functional Analysis;2024-11

2. An optimal lower bound in fractional spectral geometry for planar sets with topological constraints;Journal of the London Mathematical Society;2023-09-06

3. Perturbed eigenvalues of polyharmonic operators in domains with small holes;Calculus of Variations and Partial Differential Equations;2023-03-29

4. Some effects of nonlocal diffusion on the solutions of Fisher-KPP equations in disconnected domains;Calculus of Variations and Partial Differential Equations;2022-11-09

5. Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region;Calculus of Variations and Partial Differential Equations;2021-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3